Genetic and Biochemical Evidence That Haploinsufficiency of the Nf1 Tumor Suppressor Gene Modulates Melanocyte and Mast Cell Fates in Vivo

نویسندگان

  • David A. Ingram
  • Feng-Chun Yang
  • Jeffrey B. Travers
  • Mary Jo Wenning
  • Kelly Hiatt
  • Sheryl New
  • Antoinette Hood
  • Kevin Shannon
  • David A. Williams
  • D. Wade Clapp
چکیده

Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurofibromin as a regulator of melanocyte development and differentiation.

Patients with the genetic disease type I neurofibromatosis (NF1) exhibit characteristic pigmentary lesions associated with loss of a single allele of NF1, encoding the 260 kDa protein neurofibromin. To understand the basis for these pigmentary problems, the properties of melanocytes haploinsufficient for the murine gene Nf1 were studied using Nf1(+/-) knockout mice. We demonstrate that neurofib...

متن کامل

Nf1-Dependent Tumors Require a Microenvironment Containing Nf1+/−- and c-kit-Dependent Bone Marrow

Interactions between tumorigenic cells and their surrounding microenvironment are critical for tumor progression yet remain incompletely understood. Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a common genetic disorder characterized by complex tumors called neurofibromas. Genetic studies indicate that biallelic loss of Nf1 is required in the tumorig...

متن کامل

Nf1+/- mice have increased neointima formation via hyperactivation of a Gleevec sensitive molecular pathway.

Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the NF1 tumor suppressor gene. Neurofibromin is encoded by NF1 and functions as a negative regulator of Ras activity. Somatic mutations in the residual normal NF1 allele within cancers of NF1 patients is consistent with NF1 functioning as a tumor-suppressor. However, the prevalent non-malignant manifestations of NF1, in...

متن کامل

The molecular genetics of neurofibromatosis type 1 and its future prospective

Abstract   Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that is caused through loss of function mutations of a tumor suppressor gene termed neurofibromin 1. Therapeutic decisions are presently restricted for NF1-associated tumors, where treatment is often restricted to thorough surgical resection with perfect margins. In this review article, the multif...

متن کامل

Hyperactivation of P21ras and the Hematopoietic-Specific Rho Gtpase, Rac2, Cooperate to Alter the Proliferation of Neurofibromin-Deficient Mast Cells in Vivo and in Vitro

Mutations in the NF1 tumor suppressor gene cause neurofibromatosis type I (NF1), a disease characterized by the formation of cutaneous neurofibromas infiltrated with a high density of degranulating mast cells. A hallmark of cell lines generated from NF1 patients or Nf1-deficient mice is their propensity to hyperproliferate. Neurofibromin, the protein encoded by NF1, negatively regulates p21(ras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 191  شماره 

صفحات  -

تاریخ انتشار 2000